
NASA-TM-109209
@

Minimum Physical Requirements for
Parallel Execution of

the Decimation in Frequency Fast Fourier Transform

Robert J. Meier, Jr.*
Research Scientist

Ames Research Center
National Aeronautics and Space Administration

August 11, 1986

Abstract

When the Fast Fourier Transform of a large number of

samples, n, is implemented on physical hardware,
performance limits are dictated by fundamental physical
laws. These limitations are illustrated by examination
of a decimation in frequency Fast Fourier Transform on a

cellular layout of n processors. The decimation in
frequency algorithm minimizes operation time, O(Iog2n),

but minimizes total execution time only when all other
costs, such as communication time are negligible. For a
large number of processors (n> ~1800 with typical
current technology), the propagation delay of the

decimation in frequency algorithm, O(n 1/2 Iog2n),

dominates the total execution time. If all costs except

propagation delay and operation time are negligible, then
total execution time is minimized by choosing n 1/2 as

the radix. Choosing a radix of n 1/2 creates a two-level
nested discrete Fourier transform requiring an execution

time of only O(nl/2). Other limitations which become
significant when the number of samples, n, increases are
mentioned. These impose even greater execution times.

Keywords: communication time, fast Fourier transform, shuffling,
physical limitations, decimation in frequency, discrete Fourier
transform, parallel processing, multiprocessing, propagation delay

* Supported by the National Aeronautics and Space Administration,
Ames Research Center

\

Introduction

As parallel processing developments decrease the cost of

processing, other costs such as communication, compilation, and

loading become more significant. This paper presents an estimation

of the time required to execute a fast Fourier transform 1. Unlike

previous studies 2, consideration will be given to the communication

time as well as the operation time. A fast Fourier transform

algorithm must be implemented on hardware which exists within the

rules of our physical universe3 and so has finite nonzero size 4.

Furthermore, fundamental physical laws, such as the speed of light,

impose limits on their interaction.

This paper first presents a look at the classic decimation in
frequency fast Fourier transform, and its operation count. A brief

description of an implementation follows. The time to execute the

algorithm on the given implementation is evaluated with and

without consideration of propagation delay. Because the propagation
delay is found to dominate, a description of a modified algorithm

using a radix chosen to minimize total execution time is given and

shown to be faster. Lastly, the effect of memory size,

communication channel capacity, compilation, and alternate
implementation is discussed.

Fast Fourier Transform Algorithm

A Fourier transform multiplies a time sample vector, t, by a

weight matrix, W, obtaining a frequency sample vector, f, such that

f = W t, (la)

n-1

fk = _ tj wJk,

j=O

(lb)

w = cis(2_/n),

cis(x) = e 2=ix

(lc)

(ld)

A fast Fourier transform factors the weight matrix, W, to
dramatically reduce the actual number of operations. Equation (lb)
indicates that a discrete Fourier transform requires n2 additions and
n2 multiplications. The factorization used can be shown with a
dataflow graph. Figure 1, a dataflow graph, corresponds to
Algorithm 1, the four sample discrete Fourier transform. The line
going out the right of eachnode represents the weighted sum of the
data on each line coming from the left. Because all of the weights
are powers of w, only the exponent is placed near a line to indicate
the weight. Since a weight of one, wO, occurs most frequently, the
absence of an exponent indicates a 0. Note also that because
wn = 1, all exponents are modulo n.

to-- fo
t _ "_",o f

t SxA> of
2 __" 2

t3/ _"-'_f 3

Figure 1
Four Sample Discrete Fourier Transform

f0 = to + tl + t2 + t3

fl to + wit1 + w2t2 + w3t3

f2 = to + w2tl + t2 + w2t3

f3 = to + w3tl + w2t2 + wlt3

Algorithm 1

Four Sample Discrete Fourier Transform

Figure 2 and Algorithm 2, illustrate how the matrix is factored

for the fast Fourier transform. Along any path from a time sample

to a frequency sample, the sum of the exponents, corresponding to
the product of the weights, is the same as for the discrete Fourier

transform above. Note that while the discrete transform requires
twelve nontrivial additions and eight nontrivial multiplications, the
fast transform requires only eight nontrivial additions and five
nontrivial multiplications.

i°%/
t2

t • _o

Figure 2

Four-Sample Fast Fourier Transform

g 0 = to + t2

gl =tl +t3

g2 = to + w2t2

g 3 = tl + w2t3

go' = go

gl' = gl

g2' = w°g2

g3' = wig3

II , I

go = go + gl

gl" = go' + w2gl'
W!

g2 = g2 + g3'

g3" -- g2' + w2g3'

f0 = g0"

fl = g2"

f2 = gl"

f3 = g3"

Algorithm 2

Four Sample Fast Fourier Transform

The decimation in frequency algorithm can be extended

indefinitely, characterized by two parameters as shown in Figure 3.

Given the number of samples, n, and the number of terms in each

weighted sum, the radix, r, the algorithm is completely determined.

All but the last stage has a butterfly substage and a phase substage.
The last stage has a butterfly, and a decimator. Each butterfly

performs a weighted sum. Each multiplier in the phase substage

multiplies its single input line by a power of w. The decimator
substage rearranges the samples.

!1

Figure 3
Parameters of Fast Fourier Transform

The general algorithm, Algorithm 3, consists of Iogrn stages.

During stage i, it uses internal vectors, g(2i-1), and g(2i). It also uses

internal indices, a, b, c, and d, as well as vector, p. All but the for*

loop can be executed in parallel.

forO<k<n,
g(O)k = t k

for* 0 < I < Iogrn,

a(I) = n/rl-1,

b(I) = n/rt,
c = n/r

d(I) = rl-1

for 0 < i < n/a(i),

for 0 < j < b(I),

forO<k<r,

r-1

g(21-1)ai+j+b k _-_ w ckcm g(21-2)ai+j+b m

m=O

g(21)ai+j+b k = wdjck g(21-1)ai+j+bk

C = n/r,

I= Iogrn,

forO<i<c,

forO<k<r,

r-1

g(21-1)ci+k = _ w ckcm g(21-2)ci+m

m=O

I --Iogrn,

for O<k<n,

fk = g(21-1)j

Decimation in

I-1

where j = _ Pi rl

i

i=O

I-I

and k=_ Pi rl-i

i=O

Algorithm 3

Frequency Fast Fourier Transform

Operation Time

The simplest figure to derive from the given algorithm is the

number of additions and multiplications that must be performed.

The only nontrivial additions occur during summation and number

n Iogrn(r-1). The nontrivial multiplications during summation

number n logr n k/r where k is the number of nonzero elements in the

modulo r multiplication table. If r is prime, then k = (r-1)2. If r is

a power of 2, 2 e, then k= 4e(1-2-e)- e2 e-1 The number of
nontrivial multiplications in the phase substages is

n (Iogr n - 1) k/r 2.

We can examine the time involved in each stage. In the

following discussion we consider only the time to add, T a, and the

time to perform a multiplication, T m. The total weighted sum

multiplication time, TM1, the total addition time, T A, and the total

adjusted multiplication time, TM2, can be calculated. If there are

enough cells, then all the weighted sum multiplications can be
performed in parallel as shown in Figure 5. If not, then the minimum

time is achieved by distributing the work evenly. (N.B. cl(x) is the

smallest integer greater than or equal to x.)

THI"

T
i'n

cl[n(r- 1)2/ruv]Tr, /

ruvl(r- I)2 n)

Figure 5

Weighted Sum Multiplication Time versus Number of

Samples

If there are enough cells, the additions can be performed in

binary tree fashion as shown in Figure 6. Figure 7 shows how the

addition time increases with the number of samples. The steps in

Figure 7 reflect the depth of the addition tree that can be supported

for the given number of samples.

Figure 6

Detail of Binary Tree Addition at Butterfly Node

T A"

(1og2r+ 11)T a

(log2r+ 4)T _

(log2r+ 1)_1

l°g2rT I

cl(log2r-i+2i+'-2)T_

[n(r-I)luvy

I

I

I

I

I

I

I

I

I

I

I

4uv/r2uvlr 8uvlr uv n)

Figure 7

Addition Time versus Number of Samples (r=8)

The phase multiplications are independent and can be done in
parallel in time, Tm, if there are enough cells. This is shown in

Figure 8.

mM2"

mr, n

cl[n(r-I)luv]Tm/

I

I

l

l

l

I

I

!

uvl(r- I) n>

Figure 8

Multiplication Time versus Number of Samples

The total time for all stages is the sum of the time for each

stage.

T = TMllOgr n + TAIogrn + TM2(Iogrn - 1) (2)

If we assume that we always have enough cells, uv__. n(r-1),
then the minimum total time is achieved,

Tmi n ='cl(Iogr n) [2T m + cl(Iog2r)T a] - T m (3)

Implementation

For the purposes of this discussion, a simple two-dimensional

layout with a fixed control structure will be assumed. Such an
implementation could be laid out in VLSI and will serve to illustrate

the points involved. The entire system will be assumed to be made

up of simple cells that contain a complex multiplier, a complex

adder, a memory store, and a communications interface as shown in

Figure 4. Though as many as three dimensions have been used for

layout, normal fabrication replicates devices primarily in two
dimensions. It is common to have thousands of devices juxtaposed

in two dimensions and only a few in the third. Consideration of

unrestrained replication in three dimensions changes the results

slightly quantitatively, but not qualitatively.

Complex

Memory

Complex

Multiplier

Complex

Adder

Interface
v

v I
u

Figure 4

Cellular Layout of Fast Fourier Transformer

For the purposes of this discussion, the array will be assumed

to be rectangular with u by v cells. For simplicity, u and v are

powers of r. Note that the network interfaces form a continuous

mesh over the entire structure. It is assumed that only one element

of each cell can operate at any given time, though all of the cells can

operate simultaneously. The choice of a different network will

change the ,quantitative results slightly, but not the qualitative
results. Even when a logical hypercube with d dimensions is used, it

must still be implicitly mapped onto a physical network of two
dimensions.

For the purposes of this discussion, interprocessor
communication time is assumed to be one system clock cycle. This
system clock cycle is assumed to be equal to the maximum signal
propagation time, Pmax. To guarantee synchronization, such a clock

cycle must be at least equal to Pmax-Pmin+Ts. (Pmax and Pmin are the

maximum and minimum signal propagation times respectively. T s is

a setup, switching, or settling time independent of the size of the

structure.) As Pmax grows Prnax-Pmin+Ts must grow. The difference,

Pmax-Pmin, is the sum of individual differences along a chain. At

each stage along the chain, the difference is >0 and so Pmin cannot

keep up with Pmax and the difference, Pmax-Pmin must eventually be

dominated by Pmax. Multilevel clock and wait state schemes abound

but these cannot decrease the communication times below

propagation delay. This inherent dependence on the maximum

propagation delay, implies that choice of clock scheme can

determine the low-order terms and the leading constant in the

formulae, but cannot affect the order of the leading term. The

crossover points encountered in comparing different algorithms

might change, but the asymptotic behavior is unchanged.

Propagation Time

In this section we will consider communication time. In the

previous section, we implicitly assumed that all the data was

available, when and where it was needed. This was equivalent to the

assumption that communication time was identically zero. As we

make our processors faster, either by improved technology or by
locally parallel operations, the cost of communication becomes

relatively more significant.

Communication time is strongly dependent on the physical

dimensions of the device, and so we will now examine this aspect.

We stated that the structure is u x v cells but we neglected to
consider the size of the cells themselves. For the sake of this

discussion, let us assume, that each cell is square and has a side of
length a as shown in Figure 9.

_-W,.K.-- b)(

Interface

¢ .--_..-.y

Complex T
$

Memory _
Complex

Multiplier i
Complex t

Adder _
w
4,

Figure 9

Physical Dimensions of Cell

In general signal propagation speed is limited absolutely by

the speed of light, practically by a technology dependent constant

that we witl call c. Almost all machines built support equal access

time to all parts of the machine. They enforce it by simply imposing

a minimum time on all transmissions equal to the worst case

transmission time. in the model given, the worst case, assuming no
contention, is that of corner to corner communication,

T c = (u+v)a/c. (4)

For a given number of cells, uv, this is minimized if u =v.

If we examine Algorithm 3, we can count the number of
necessary communications, in like manner to our count of the

number of operations. With enough processors, u 2 > n(r-1)2/r, the
weighted sum multiplications can be performed independently, and

we assume that fetching the data will be done independently in

T c = 2(r-1)an1/2/crl/2. if we assume a binary tree summation as

shown in Figure 10, only log2 r global transmission times are

necessary.

Figure 10

Dataflow Diagram of Radix 8 Weighted Sum

Figures 8a, 8b, 8c, and 8d show how this radix 8 weighted sum

would be mapped onto a set of processors in our array. The arrows
indicate the intercell communication that must take place. By

judicious mapping of the operations from the dataflow graph to the

processors, some of the data can be in the right cell without the

need for a global transmission.

Xl X2 X$

X8 X4 _

X7

Figure 11a
Weighted Sum Multiplications in First Time Interval

+1

+4
-..)

+2

1'

+3

Figure 11b

Weighted Sum Additions in Second Time Interval

+5
---)

+6
....) (.-

Figure 11c
Weighted Sum Additions in Third Time Interval

+7

Figure 11d
Weighted Sum Addition in Fourth Time Interval

With the above processor mapping in mind, the total execution

time, including propagation time is,

Tmi n = cl(Iogrn) [2T m + cl(Iog2r)T a + cl(Iog2r)Tc]- T m, (5)

and since T c is a function of n,

Tmin = n 1/2 cl(Iogrn) cl(log2r) 2(r-1)a/ cr 1/2

+ cl(Iogrn) [2T m + cl(Iog2r)Ta] - T m (6)

Figure 12 illustrates the combination of operation time and
propagation time. The total time is dominated by operation time for
small n and is dominated by propagation time for large n. For typical
technology 5, (T m _- Ta = 80ns, c_- 20Mm/s, a-- 8cm, r=2) the
crossover occurs when n =. 1,800.

/

V-ficl (logrn)
cl(log2r)2(r-1)a ...-'" cl(logrn)[2Tm+Cl(log2r)T a]

P

[2Tm+Cl (log2r)Ta]2 rc2
n)

[cl(log2r) 2(r- I)a]2

Figure 12

Total FFT Execution Time versus Number of Samples

Choice of Radix

In this section we consider the choice of radix, r, that

minimizes total execution time. In the previous section, we

implicitly assumed that the radix was a constant independent of n.

Normally, the radix has been chosen to be exactly two, the choice

which leaves no processors idle at any time. As we increase the

radix, we support more local storage of intermediate results and

thus expect to reduce the communication load. We will thus

consider the effect of changing radix for small numbers of samples

where processing time dominates and for large numbers of samples
where communication time dominates.

Figure 13 shows the effect of changing the radix for fixed n as
indicated by the formula in Figure 9. For small n, the effects of
truncation are pronounced and a radix exists which minimizes total
time. If multiplication time and addition time are equal, the
optimum radix is approximately 2 for reasonable n (16 < n). With
typical technology, the multiplication time is about thrice addition
time and the optimum radix is approximately 4.

mr.i

lo g2n[2Tm+Ta

10g2nI2T+Ta

/1 2Tml°g2n 1e "l Tm4"log2nTa 2

!

!

,' l o g2n[(l_-_/,_*1) T+Ta]
I

!

!

!

!

2 2 e r->

Figure 13

Total Execution Time versus Radix for Small Sample
Number

For large n, where the communication time dominates, the

weighted sum additions need not be done in a binary tree. If one
processor fo'r each butterfly is used to perform the additions

sequentially , the addition and multiplication time at each stage is
respectively (r-1)T a and rT m. With this is mind, T c and Tmi n can be
recalculated.

Tmin = cl(Iogrn) [rT m + (r-1)T a + Tc] - T m (7a)

T c = nl/2 a/c (7b)

Figure 14 shows how the minimum execution time for large n
varies with radix under this assumption. Note that the minimum

occurs when the radix equals n 1/2 and hence there are only two

stages as shown in Figure 15. If the radix is larger than nl/2, the

time to perform the additions sequentially exceeds the

communication time. If the radix is smaller than n 1/2, the

communication time exceeds the sequential addition time. Note also

that the minimum assuming two stages is less than the minimum

shown in Figure9 for the ordinary decimation in frequency

algorithm.

Tm_

1og2n[2Tm+_ +v"6'-_-]-Tm

2
I

jr>

Figure 14
Execution Time versus Radix for Large Sample

o

butterfly phase butterfly decimator

Number

Figure 15

Two-Stage 16 Sample Fourier Transform

Other Limits

The evaluation of the two-stage nested discrete Fourier

transform in the last section implicitly assumed that the memory

available at each node was infinite (or that memory occupied

infinitesimal space). In fact, as the radix is increased to 0(nl/2),

the memory in each cell must increase to O(n 1/2) and so must the

cell size to 0(nl/4). This drives the propagation delay to 0(n3/4).

Even if there is no need to store n 1/2 intermediate results, it is

necessary to store the weights. The decimation in frequency
algorithm does not escape this fate, since it must store weights as

well and the number grows with the number of stages.

In addition to the growth of the memory section of each cell,

an increase in radix to O(n 1/2) drives the number of signals in the

system from O(n) to 0(n3/2). If the number of nodes remains at n,

each network element must handle a load increasing as 0(nl/2). This

does not become a dominant problem however, because the execution

time is growing as O(n 112) as well.

Compilation must be considered as well. If all of the weights

are precomputed then there are n log n such constants or n log n

pointers to n such constants. For a large enough n, the storage of

n log n constants would require a structure with a radius,

propagation delay, and execution time of O((n log n)1/2). If these

constants are computed during execution, then O(log n) operations
at each node are required to compute them (or their pointers). The

tradeoff between simplifying the decimation stage, reducing the

precomputation of constants, and reducing the storage of constants

is complicated, but eventually it must impose a limit between

O(n 1/2) and 0(n3/4).

Conclusion

In this paper we have presented a representative fast Fourier

transform algorithm and implementation to illustrate that as the
number of samples, n, grows large for a fixed processor design, the

signal propagation time becomes dominant. Only if one ignores the

propagation delay, does the classic decimation in frequency

algorithm extend optimally to large numbers of samples. If one only

considers multiplication and addition time, then an unlimited

number of processors, can execute a fast Fourier Transform in
O(Iog n) time. Consideration of propagation delay, shows that

communication time grows as n 1/2 log n and soon dominates. By

changing the radix to n 1/2, and using two stages, execution time is

reduced to O(nl/2), so that the decimation in frequency algorithm is

shown to be nonoptimal.

These results are in keeping with empirical experience. The

comparison of various fast Fourier transform algorithms on an

assortment of vector concurrent processors 6 demonstrates the

advantage of the two-stage algorithm for a large number of samples.

As the degree of parallelism grows or where communication is
costly, the two-stage algorithm requires less time.

As we continue to improve the speed of our processing, other

costs of computation such as communication time become more

significant. We must consider these other factors in estimating the

time and component cost of high-performance algorithms and in

selecting the optimal one for a given situation. With technology

typical today, we are seeing these effects in multiprocessor

computers that fail to realize the high gross processing speed

promised.

1J.W. Cooley and J.W. Tukey, Mathematics of Computation, vol. 19,
April 1965, pp. 297-301

2Ronald N. Bracewell, The Fourier Transform and its

Applications, McGraw-Hill, Inc., 1978, p. 370-379

3Brian Bakoglu, Circuit and System Performance on ULSI-

lnterconnections and Packaging, Doctoral Thesis, Stanford

University, August 14, 1986

4Robert W. Keyes, The Wire-Limited Logic Chip, IEEE Journal of

Sofid-State Circuits, Vol. SC-17, No. 6, December 1982, p. 1232-
1233

5Monolithic Memories, Inc., LSI Databook, Monolithic Memories,

Inc., 1985, p. 10-2

6paul N. Swarztrauber, Multiprocessor FFTs, National Center for
Atmospheric Research, June 1986

